If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-y^2+2y+1=0
We add all the numbers together, and all the variables
-1y^2+2y+1=0
a = -1; b = 2; c = +1;
Δ = b2-4ac
Δ = 22-4·(-1)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2}}{2*-1}=\frac{-2-2\sqrt{2}}{-2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2}}{2*-1}=\frac{-2+2\sqrt{2}}{-2} $
| 1/4(8x-24)-5x=6x-3(x+7) | | x-x-3/5=3x-1/2 | | d²-5d-24=()() | | 5x^2-17x6=0 | | 5x^2-17x-16=0 | | d-2.8+0.2=-14 | | 2x^2-32=- | | 2(7u-3)-(u+9)-3(20+1)=24 | | 6x^2+12x=18+35x | | 6x^2-23x=18+35x | | X(x+1)=19 | | 10x-1/3+5/6=3x+1/2+7x | | 1x(50)=25 | | (x^2-3x-10)=0 | | 2x^2+5.5x-20=0 | | (x^2+3x+10)=0 | | x(x^2+3x+10)=0 | | -35z^2+29z-6=0 | | X^3+3x^2+10x=0 | | 3(2x-5)=4x+2x+8 | | 7/10y=49/100 | | x=12/35Y | | 7(u+4)=35 | | X+(2x)=27 | | 8/9x=24=x | | -5x/2=x-6 | | 7/10y=49/100=y | | 7x=2-19 | | (x-5)²=81 | | -7x^2+14x+21=0 | | (5x-1)+(5x-19)=180 | | x+2=0=-2 |